High Carrier Density and Capacitance in TiO2 Nanotube Arrays Induced by Electrochemical Doping

View Author Information
Departament de Física, Universitat Jaume I, 12071 Castelló de la Plana, Spain, and Department of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
†Universitat Jaume I.
‡The Pennsylvania State University.
Cite this: J. Am. Chem. Soc. 2008, 130, 34, 11312–11316
Publication Date (Web):August 1, 2008
Copyright © 2008 American Chemical Society
Article Views
Read OnlinePDF (1 MB)


The paper describes the electronic charging and conducting properties of vertically oriented TiO2 nanotube arrays formed by anodization of Ti foil samples. The resulting films, composed of vertically oriented nanotubes approximately 10 μm long, wall thickness 22 nm, and pore diameter 56 nm, are analyzed using impedance spectroscopy and cyclic voltammetry. Depending on the electrochemical conditions two rather different electronic behaviors are observed. Nanotube array samples in basic medium show behavior analogous to that of nanoparticulate TiO2 films used in dye-sensitized solar cells: a chemical capacitance and electronic conductivity that increase exponentially with bias potential indicating a displacement of the Fermi level. Nanotube array samples in acidic medium, or samples in a basic medium submitted to a strong negative bias, exhibit a large increase in capacitance and conductivity indicating Fermi level pinning. The contrasting behaviors are ascribed to proton intercalation of the TiO2. Our results suggest a route for controlling the electronic properties of the ordered metal-oxide nanostructures for their use in applications including supercapacitors, dye-sensitized solar cells, and gas sensing.

Cited By

This article is cited by 331 publications.

  1. Chao Geng, Tulai Sun, Zhencui Wang, Jin-Ming Wu, Yi-Jie Gu, Hisayoshi Kobayashi, Peng Yang, Jianhang Hai, Wei Wen. Surface-Induced Desolvation of Hydronium Ion Enables Anatase TiO2 as an Efficient Anode for Proton Batteries. Nano Letters 2021, 21 (16) , 7021-7029. https://doi.org/10.1021/acs.nanolett.1c02421
  2. Alexandria R. C. Bredar, Amanda L. Chown, Andricus R. Burton, Byron H. Farnum. Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications. ACS Applied Energy Materials 2020, 3 (1) , 66-98. https://doi.org/10.1021/acsaem.9b01965
  3. Sunghun Eom, Sung Hun Cho, Tomoyo Goto, Myoung Pyo Chun, Tohru Sekino. Low-Dimensional Carbon and Titania Nanotube Composites via a Solution Chemical Process and Their Nanostructural and Electrical Properties for Electrochemical Devices. ACS Applied Nano Materials 2019, 2 (10) , 6230-6237. https://doi.org/10.1021/acsanm.9b01188
  4. Maged N. Shaddad, Drialys Cardenas-Morcoso, Miguel García-Tecedor, Francisco Fabregat-Santiago, Juan Bisquert, Abdullah M. Al-Mayouf, Sixto Gimenez. TiO2 Nanotubes for Solar Water Splitting: Vacuum Annealing and Zr Doping Enhance Water Oxidation Kinetics. ACS Omega 2019, 4 (14) , 16095-16102. https://doi.org/10.1021/acsomega.9b02297
  5. Xin Liu, Patricia Carvalho, Marit Norderhaug Getz, Truls Norby, Athanasios Chatzitakis. Black Anatase TiO2 Nanotubes with Tunable Orientation for High Performance Supercapacitors. The Journal of Physical Chemistry C 2019, 123 (36) , 21931-21940. https://doi.org/10.1021/acs.jpcc.9b05070
  6. Wenping Si, Fatima Haydous, Ugljesa Babic, Daniele Pergolesi, Thomas Lippert. Suppressed Charge Recombination in Hematite Photoanode via Protonation and Annealing. ACS Applied Energy Materials 2019, 2 (8) , 5438-5445. https://doi.org/10.1021/acsaem.9b00420
  7. Bing Yan, Ryan P. Bisbey, Alexander Alabugin, Yogesh Surendranath. Mixed Electron–Proton Conductors Enable Spatial Separation of Bond Activation and Charge Transfer in Electrocatalysis. Journal of the American Chemical Society 2019, 141 (28) , 11115-11122. https://doi.org/10.1021/jacs.9b03327
  8. Zhirong Zhang, Zhongping Yao, Yanqiu Meng, Dongqi Li, Qixing Xia, Zhaohua Jiang. Construction of TiO2 Nanotubes/C/MnO2 Composite Films as a Binder-Free Electrode for a High-Performance Supercapacitor. Inorganic Chemistry 2019, 58 (2) , 1591-1598. https://doi.org/10.1021/acs.inorgchem.8b03094
  9. Yang Yang, Li Cheng Kao, Yuanyue Liu, Ke Sun, Hongtao Yu, Jinghua Guo, Sofia Ya Hsuan Liou, Michael R. Hoffmann. Cobalt-Doped Black TiO2 Nanotube Array as a Stable Anode for Oxygen Evolution and Electrochemical Wastewater Treatment. ACS Catalysis 2018, 8 (5) , 4278-4287. https://doi.org/10.1021/acscatal.7b04340
  10. Sanjay Singh Negi . Integrated Electronic, Optical, and Structural Features in Pseudo-3D Mesoporous TiO2–X Delivering Enhanced Dye-Sensitized Solar Cell Performance. ACS Omega 2018, 3 (2) , 1645-1652. https://doi.org/10.1021/acsomega.7b01812
  11. Xin Wang, Xiaotao Yuan, Dong Wang, Wujie Dong, Chenlong Dong, Yajing Zhang, Tianquan Lin, and Fuqiang Huang . Tunable Synthesis of Colorful Nitrogen-Doped Titanium Oxide and Its Application in Energy Storage. ACS Applied Energy Materials 2018, 1 (2) , 876-882. https://doi.org/10.1021/acsaem.7b00308
  12. Yee-Seul Kim, Sébastien Kriegel, Kenneth D. Harris, Cyrille Costentin, Benoît Limoges, and Véronique Balland . Evidencing Fast, Massive, and Reversible H+ Insertion in Nanostructured TiO2 Electrodes at Neutral pH. Where Do Protons Come From?. The Journal of Physical Chemistry C 2017, 121 (19) , 10325-10335. https://doi.org/10.1021/acs.jpcc.7b02395
  13. Wen-Yi Zhou, Jin-Yun Liu, Jie-Yao Song, Jin-Jin Li, Jin-Huai Liu, and Xing-Jiu Huang . Surface-Electronic-State-Modulated, Single-Crystalline (001) TiO2 Nanosheets for Sensitive Electrochemical Sensing of Heavy-Metal Ions. Analytical Chemistry 2017, 89 (6) , 3386-3394. https://doi.org/10.1021/acs.analchem.6b04023
  14. Jesús Idígoras, Juan A. Anta, and Thomas Berger . Charge-Transfer Reductive in Situ Doping of Mesoporous TiO2 Photoelectrodes: Impact of Electrolyte Composition and Film Morphology. The Journal of Physical Chemistry C 2016, 120 (49) , 27882-27894. https://doi.org/10.1021/acs.jpcc.6b09926
  15. Juan M. Jiménez, Gilles R. Bourret, Thomas Berger, and Keith P. McKenna . Modification of Charge Trapping at Particle/Particle Interfaces by Electrochemical Hydrogen Doping of Nanocrystalline TiO2. Journal of the American Chemical Society 2016, 138 (49) , 15956-15964. https://doi.org/10.1021/jacs.6b08636
  16. Yang Yang and Michael R. Hoffmann . Synthesis and Stabilization of Blue-Black TiO2 Nanotube Arrays for Electrochemical Oxidant Generation and Wastewater Treatment. Environmental Science & Technology 2016, 50 (21) , 11888-11894. https://doi.org/10.1021/acs.est.6b03540
  17. Kai-Lin Ou, Ramanan Ehamparam, Gordon MacDonald, Tobias Stubhan, Xin Wu, R. Clayton Shallcross, Robin Richards, Christoph J. Brabec, S. Scott Saavedra, and Neal R. Armstrong . Characterization of ZnO Interlayers for Organic Solar Cells: Correlation of Electrochemical Properties with Thin-Film Morphology and Device Performance. ACS Applied Materials & Interfaces 2016, 8 (30) , 19787-19798. https://doi.org/10.1021/acsami.6b02792
  18. V. C. Anitha, Arghya Narayan Banerjee, G. R. Dillip, Sang Woo Joo, and Bong Ki Min . Nonstoichiometry-Induced Enhancement of Electrochemical Capacitance in Anodic TiO2 Nanotubes with Controlled Pore Diameter. The Journal of Physical Chemistry C 2016, 120 (18) , 9569-9580. https://doi.org/10.1021/acs.jpcc.6b01171
  19. Peng Zhang, Takashi Tachikawa, Mamoru Fujitsuka, and Tetsuro Majima . Atomic Layer Deposition-Confined Nonstoichiometric TiO2 Nanocrystals with Tunneling Effects for Solar Driven Hydrogen Evolution. The Journal of Physical Chemistry Letters 2016, 7 (7) , 1173-1179. https://doi.org/10.1021/acs.jpclett.6b00227
  20. James J. Brancho and Bart M. Bartlett . Challenges in Co-Alloyed Titanium Oxynitrides, a Promising Class of Photochemically Active Materials. Chemistry of Materials 2015, 27 (21) , 7207-7217. https://doi.org/10.1021/acs.chemmater.5b02357
  21. Choonsoo Kim, Seonghwan Kim, Jaehan Lee, Jiye Kim, and Jeyong Yoon . Capacitive and Oxidant Generating Properties of Black-Colored TiO2 Nanotube Array Fabricated by Electrochemical Self-Doping. ACS Applied Materials & Interfaces 2015, 7 (14) , 7486-7491. https://doi.org/10.1021/acsami.5b00123
  22. John R. Swierk, Nicholas S. McCool, Timothy P. Saunders, Greg D. Barber, and Thomas E. Mallouk . Effects of Electron Trapping and Protonation on the Efficiency of Water-Splitting Dye-Sensitized Solar Cells. Journal of the American Chemical Society 2014, 136 (31) , 10974-10982. https://doi.org/10.1021/ja5040705
  23. He Zhou and Yanrong Zhang . Electrochemically Self-Doped TiO2 Nanotube Arrays for Supercapacitors. The Journal of Physical Chemistry C 2014, 118 (11) , 5626-5636. https://doi.org/10.1021/jp4082883
  24. Damon A. Wheeler, Yichuan Ling, Robert J. Dillon, Robert C. Fitzmorris, Christopher G. Dudzik, Liat Zavodivker, Tijana Rajh, Nada M. Dimitrijevic, Glenn Millhauser, Christopher Bardeen, Yat Li, and Jin Z. Zhang . Probing the Nature of Bandgap States in Hydrogen-Treated TiO2 Nanowires. The Journal of Physical Chemistry C 2013, 117 (50) , 26821-26830. https://doi.org/10.1021/jp409857j
  25. Sheng Li, Jingxia Qiu, Min Ling, Feng Peng, Barry Wood, and Shanqing Zhang . Photoelectrochemical Characterization of Hydrogenated TiO2 Nanotubes as Photoanodes for Sensing Applications. ACS Applied Materials & Interfaces 2013, 5 (21) , 11129-11135. https://doi.org/10.1021/am403325a
  26. Stella Itzhakov, Heping Shen, Sophia Buhbut, Hong Lin, and Dan Oron . Type-II Quantum-Dot-Sensitized Solar Cell Spanning the Visible and Near-Infrared Spectrum. The Journal of Physical Chemistry C 2013, 117 (43) , 22203-22210. https://doi.org/10.1021/jp312190x
  27. Weizhen He, Timur Sh. Atabaev, Hyung Kook Kim, and Yoon-Hwae Hwang . Enhanced Sunlight Harvesting of Dye-Sensitized Solar Cells Assisted with Long Persistent Phosphor Materials. The Journal of Physical Chemistry C 2013, 117 (35) , 17894-17900. https://doi.org/10.1021/jp307954n
  28. Milena Jankulovska, Irene Barceló, Teresa Lana-Villarreal, and Roberto Gómez . Improving the Photoelectrochemical Response of TiO2 Nanotubes upon Decoration with Quantum-Sized Anatase Nanowires. The Journal of Physical Chemistry C 2013, 117 (8) , 4024-4031. https://doi.org/10.1021/jp311068m
  29. Jesús Idígoras, Thomas Berger, and Juan A. Anta . Modification of Mesoporous TiO2 Films by Electrochemical Doping: Impact on Photoelectrocatalytic and Photovoltaic Performance. The Journal of Physical Chemistry C 2013, 117 (4) , 1561-1570. https://doi.org/10.1021/jp306954y
  30. P. Pu, H. Cachet, N. Laidani, and E. M. M. Sutter . Influence of pH on Surface States Behavior in TiO2 Nanotubes. The Journal of Physical Chemistry C 2012, 116 (42) , 22139-22148. https://doi.org/10.1021/jp3060312
  31. Hyungkyu Han, Taeseup Song, Eung-Kwan Lee, Anitha Devadoss, Yeryung Jeon, Jaehwan Ha, Yong-Chae Chung, Young-Min Choi, Yeon-Gil Jung, and Ungyu Paik . Dominant Factors Governing the Rate Capability of a TiO2 Nanotube Anode for High Power Lithium Ion Batteries. ACS Nano 2012, 6 (9) , 8308-8315. https://doi.org/10.1021/nn303002u
  32. Taro Toyoda and Qing Shen . Quantum-Dot-Sensitized Solar Cells: Effect of Nanostructured TiO2 Morphologies on Photovoltaic Properties. The Journal of Physical Chemistry Letters 2012, 3 (14) , 1885-1893. https://doi.org/10.1021/jz3004602
  33. Thomas Berger, Juan A. Anta, and Víctor Morales-Flórez . Electrons in the Band Gap: Spectroscopic Characterization of Anatase TiO2 Nanocrystal Electrodes under Fermi Level Control. The Journal of Physical Chemistry C 2012, 116 (21) , 11444-11455. https://doi.org/10.1021/jp212436b
  34. Maheshwar Shrestha, Liping Si, Chia-Wei Chang, Hongshan He, Andrew Sykes, Ching-Yao Lin, and Eric Wei-Guang Diau . Dual Functionality of BODIPY Chromophore in Porphyrin-Sensitized Nanocrystalline Solar Cells. The Journal of Physical Chemistry C 2012, 116 (19) , 10451-10460. https://doi.org/10.1021/jp210458j
  35. Adam F. Halverson, Kai Zhu, Peter T. Erslev, Jin Young Kim, Nathan R. Neale, and Arthur J. Frank . Perturbation of the Electron Transport Mechanism by Proton Intercalation in Nanoporous TiO2 Films. Nano Letters 2012, 12 (4) , 2112-2116. https://doi.org/10.1021/nl300399w
  36. Yong-Gun Lee, Suil Park, Woohyung Cho, Taewook Son, P. Sudhagar, June Hyuk Jung, Sanghyuk Wooh, Kookheon Char, and Yong Soo Kang . Effective Passivation of Nanostructured TiO2 Interfaces with PEG-Based Oligomeric Coadsorbents To Improve the Performance of Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2012, 116 (11) , 6770-6777. https://doi.org/10.1021/jp210360n
  37. Xihong Lu, Gongming Wang, Teng Zhai, Minghao Yu, Jiayong Gan, Yexiang Tong, and Yat Li . Hydrogenated TiO2 Nanotube Arrays for Supercapacitors. Nano Letters 2012, 12 (3) , 1690-1696. https://doi.org/10.1021/nl300173j
  38. Shouning Chai, Guohua Zhao, Peiqiang Li, Yanzhu Lei, Ya-nan Zhang, and Dongming Li . Novel Sieve-Like SnO2/TiO2 Nanotubes with Integrated Photoelectrocatalysis: Fabrication and Application for Efficient Toxicity Elimination of Nitrophenol Wastewater. The Journal of Physical Chemistry C 2011, 115 (37) , 18261-18269. https://doi.org/10.1021/jp205228h
  39. Gongming Wang, Hanyu Wang, Yichuan Ling, Yuechao Tang, Xunyu Yang, Robert C. Fitzmorris, Changchun Wang, Jin Z. Zhang, and Yat Li . Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Letters 2011, 11 (7) , 3026-3033. https://doi.org/10.1021/nl201766h
  40. Xinyong Li, Yang Hou, Qidong Zhao, and Guohua Chen . Synthesis and Photoinduced Charge-Transfer Properties of a ZnFe2O4-Sensitized TiO2 Nanotube Array Electrode. Langmuir 2011, 27 (6) , 3113-3120. https://doi.org/10.1021/la2000975
  41. Kai Zhu, Nathan R. Neale, Adam F. Halverson, Jin Young Kim and Arthur J. Frank. Effects of Annealing Temperature on the Charge-Collection and Light-Harvesting Properties of TiO2 Nanotube-Based Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2010, 114 (32) , 13433-13441. https://doi.org/10.1021/jp102137x
  42. Amilcare Iacomino, Giovanni Cantele, Fabio Trani and Domenico Ninno. DFT Study on Anatase TiO2 Nanowires: Structure and Electronic Properties As Functions of Size, Surface Termination, and Morphology. The Journal of Physical Chemistry C 2010, 114 (29) , 12389-12400. https://doi.org/10.1021/jp9090987
  43. Haimin Zhang, Porun Liu, Xiaolu Liu, Shanqing Zhang, Xiangdong Yao, Taicheng An, Rose Amal and Huijun Zhao . Fabrication of Highly Ordered TiO2 Nanorod/Nanotube Adjacent Arrays for Photoelectrochemical Applications. Langmuir 2010, 26 (13) , 11226-11232. https://doi.org/10.1021/la1005314
  44. Nir Baram and Yair Ein-Eli. Electrochemical Impedance Spectroscopy of Porous TiO2 for Photocatalytic Applications. The Journal of Physical Chemistry C 2010, 114 (21) , 9781-9790. https://doi.org/10.1021/jp911687w
  45. De-Sheng Kong. Anion-Incorporation Model Proposed for Interpreting the Interfacial Physical Origin of the Faradaic Pseudocapacitance Observed on Anodized Valve Metals—with Anodized Titanium in Fluoride-Containing Perchloric Acid as an Example. Langmuir 2010, 26 (7) , 4880-4891. https://doi.org/10.1021/la9036869
  46. P. Justin, Sumanta Kumar Meher and G. Ranga Rao. Tuning of Capacitance Behavior of NiO Using Anionic, Cationic, and Nonionic Surfactants by Hydrothermal Synthesis. The Journal of Physical Chemistry C 2010, 114 (11) , 5203-5210. https://doi.org/10.1021/jp9097155
  47. Jun Zhang, Jin Ho Bang, Cencun Tang and Prashant V. Kamat . Tailored TiO2−SrTiO3 Heterostructure Nanotube Arrays for Improved Photoelectrochemical Performance. ACS Nano 2010, 4 (1) , 387-395. https://doi.org/10.1021/nn901087c
  48. Benjamin H. Meekins and Prashant V. Kamat. Got TiO2 Nanotubes? Lithium Ion Intercalation Can Boost Their Photoelectrochemical Performance. ACS Nano 2009, 3 (11) , 3437-3446. https://doi.org/10.1021/nn900897r
  49. David R. Baker and Prashant V. Kamat. Disassembly, Reassembly, and Photoelectrochemistry of Etched TiO2 Nanotubes. The Journal of Physical Chemistry C 2009, 113 (41) , 17967-17972. https://doi.org/10.1021/jp9065357
  50. Chuan He, Zhi Zheng, Huili Tang, Linan Zhao and Fang Lu. Electrochemical Impedance Spectroscopy Characterization of Electron Transport and Recombination in ZnO Nanorod Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2009, 113 (24) , 10322-10325. https://doi.org/10.1021/jp902523c
  51. Xianfeng Yang, Jianle Zhuang, Xiuyan Li, Dihu Chen, Gangfeng Ouyang, Zhongquan Mao, Yaxiong Han, Zhenhui He, Chaolun Liang, Mingmei Wu and Jimmy C. Yu . Hierarchically Nanostructured Rutile Arrays: Acid Vapor Oxidation Growth and Tunable Morphologies. ACS Nano 2009, 3 (5) , 1212-1218. https://doi.org/10.1021/nn900084e
  52. Alex B. F. Martinson, Márcio S. Góes, Francisco Fabregat-Santiago, Juan Bisquert, Michael J. Pellin and Joseph T. Hupp. Electron Transport in Dye-Sensitized Solar Cells Based on ZnO Nanotubes: Evidence for Highly Efficient Charge Collection and Exceptionally Rapid Dynamics. The Journal of Physical Chemistry A 2009, 113 (16) , 4015-4021. https://doi.org/10.1021/jp810406q
  53. Bin Rong, Yuelin Wei, Xia Chen, Yuying Ding, Yibin Chen, Haining Liu, Yunfang Huang, Leqing Fan, Jihuai Wu. Electron transport improvement of perovskite solar cells via intercalation of Na doped TiO2 from metal-organic framework MIL-125(Ti). Applied Surface Science 2022, 574 , 151735. https://doi.org/10.1016/j.apsusc.2021.151735
  54. Mingzhi Chen, Hongzheng Dong, Mengfan Xue, Chunsheng Yang, Pin Wang, Yanliang Yang, Heng Zhu, Congping Wu, Yingfang Yao, Wenjun Luo, Zhigang Zou. Faradaic junction and isoenergetic charge transfer mechanism on semiconductor/semiconductor interfaces. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-26661-6
  55. Yasmina Bencheikh, Ahmed Addad, Yannick Coffinier, Umesh Kumar, Pascal Roussel, Sabine Szunerits, Toufik Hadjersi, Mohammed A. Amin, Seddik El hak Abaidia, Rabah Boukherroub. Silicon nanowire-hydrogenated TiO2 core-shell arrays for stable electrochemical micro-capacitors. Electrochimica Acta 2021, 396 , 139198. https://doi.org/10.1016/j.electacta.2021.139198
  56. S.H.A. Ahmad, Amir Al-Ahmed, Abbas Saeed Hakeem, Thamraa Alshahrani, Q. Mahmood, Umer Mehmood, H.A. Qayyum, Muhammad Younas, Muhammad Illyas, H. Dafalla, Rahila Jawaid, A. Laref, Anya Josefa Yago. Enhancing the performance of dye-sensitized solar cell using nano-sized erbium oxide on titanium oxide photoanode by impregnation route. Journal of Photochemistry and Photobiology 2021, 7 , 100047. https://doi.org/10.1016/j.jpap.2021.100047
  57. Emine Başalan, Mustafa Erol, Orkut Sancakoğlu, Tuncay Dikici, Erdal Çelik. Comparison of processing parameter effects during magnetron sputtering and electrochemical anodization of TiO 2 nanotubes on ITO/glass and glass substrates. Materials Testing 2021, 63 (3) , 245-252. https://doi.org/10.1515/mt-2020-0036
  58. Xiumin Ma, Zheng Ma, Dongzhu Lu, Quantong Jiang, Leilei Li, Tong Liao, Baorong Hou. Enhanced photoelectrochemical cathodic protection performance of MoS2/TiO2 nanocomposites for 304 stainless steel under visible light. Journal of Materials Science & Technology 2021, 64 , 21-28. https://doi.org/10.1016/j.jmst.2020.01.029
  59. Robert Brüninghoff, Ainoa Paradelo Rodríguez, Ronald P.H. Jong, Jacobus M. Sturm, Uwe Breuer, Caroline Lievens, Adriaan W. Jeremiasse, Guido Mul, Bastian Mei. Electrochemical preparation of defect-engineered titania: Bulk doping versus surface contamination. Applied Surface Science 2021, 539 , 148136. https://doi.org/10.1016/j.apsusc.2020.148136
  60. Meng-Meng Zhang, Jia-Yuan Chen, Hui Li, Chun-Rui Wang. Recent progress in Li-ion batteries with TiO2 nanotube anodes grown by electrochemical anodization. Rare Metals 2021, 40 (2) , 249-271. https://doi.org/10.1007/s12598-020-01499-x
  61. Min Chen, Xin Zhao, Can Wang, Shuang Pan, Cong Zhang, Yingcai Wang. Electrochemical oxidation of reverse osmosis concentrates using macroporous Ti-ENTA/SnO2-Sb flow-through anode: Degradation performance, energy efficiency and toxicity assessment. Journal of Hazardous Materials 2021, 401 , 123295. https://doi.org/10.1016/j.jhazmat.2020.123295
  62. Nurul Asma Samsudin, Ying-Chin Lim, Sook-Keng Chang, Ivy Heng, Foo Wah Low, Mohammad Shakeri, Chin Wei Lai, Nilofar Asim, Nowshad Amin, Sieh Kiong Tiong, Jagadeesh Pasupuleti. Titanium Dioxide Nanostructured Based Supercapacitors. 2021,,https://doi.org/10.1016/B978-0-12-819723-3.00030-5
  63. Uroš Lačnjevac, Rastko Vasilić, Ana Dobrota, Slađana Đurđić, Ondřej Tomanec, Radek Zbořil, Shiva Mohajernia, Nhat Truong Nguyen, Natalia Skorodumova, Dragan Manojlović, Nevenka Elezović, Igor Pašti, Patrik Schmuki. High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO 2 nanotube arrays as interactive supports for Ir nanoparticles. Journal of Materials Chemistry A 2020, 8 (43) , 22773-22790. https://doi.org/10.1039/D0TA07492F
  64. Yihong Qu, Xin Tong, Chenhuan Yan, Yuzhao Li, Zhe Wang, Shaohui Xu, Dayuan Xiong, Lianwei Wang, Paul K. Chu. Hierarchical binder-free MnO2/TiO2 composite nanostructure on flexible seed graphite felt for high-performance supercapacitors. Vacuum 2020, 181 , 109648. https://doi.org/10.1016/j.vacuum.2020.109648
  65. G.V. Sokolsky, Ye.I. Boldyrev, N.D. Ivanova, S.V. Ivanov, G.Ya. Kolbasov, G. Lazzara, L.V. Zudina, N.V. Gayuk, S.V. Chivikov. Effects of electrolyte doping on electrodeposited nanostructured manganese oxide and chromium oxide. Surface and Coatings Technology 2020, 400 , 126211. https://doi.org/10.1016/j.surfcoat.2020.126211
  66. Wanggang Zhang, Yiming Liu, Zhiyuan Song, Changwan Zhuang, Aili Wei. The storage mechanism difference between amorphous and anatase as supercapacitors. Green Energy & Environment 2020, 24 https://doi.org/10.1016/j.gee.2020.10.004
  67. Yijie Liu, Tong Sun, Qing Su, Yizhen Tang, Xing Xu, Muhammad Akram, Bo Jiang. Highly efficient and mild electrochemical degradation of bentazon by nano-diamond doped PbO2 anode with reduced Ti nanotube as the interlayer. Journal of Colloid and Interface Science 2020, 575 , 254-264. https://doi.org/10.1016/j.jcis.2020.04.092
  68. Jianxiong Xu, Hugo Olvera-Vargas, Bryan Jian Hua Loh, Olivier Lefebvre. FTO-TiO2 photoelectrocatalytic degradation of triphenyltin chloride coupled to photoelectro-Fenton: A mechanistic study. Applied Catalysis B: Environmental 2020, 271 , 118923. https://doi.org/10.1016/j.apcatb.2020.118923
  69. Maria R. Pinto, Gabriel F. Costa, Eduardo G. Machado, Raphael Nagao. Self‐Organization in Electrochemical Synthesis as a Methodology towards New Materials. ChemElectroChem 2020, 7 (14) , 2979-3005. https://doi.org/10.1002/celc.202000065
  70. Min Chen, Can Wang, Xin Zhao, Yingcai Wang, Weiqiu Zhang, Zefang Chen, Xiaoyang Meng, Jinming Luo, John Crittenden. Development of a highly efficient electrochemical flow-through anode based on inner in-site enhanced TiO2-nanotubes array. Environment International 2020, 140 , 105813. https://doi.org/10.1016/j.envint.2020.105813
  71. Babatunde A. Koiki, Benjamin O. Orimolade, Busisiwe N. Zwane, Duduzile Nkosi, Nonhlangabezo Mabuba, Omotayo A. Arotiba. Cu2O on anodised TiO2 nanotube arrays: A heterojunction photoanode for visible light assisted electrochemical degradation of pharmaceuticals in water. Electrochimica Acta 2020, 340 , 135944. https://doi.org/10.1016/j.electacta.2020.135944
  72. Guangqing Xu, Qiang Feng, Zhiwei Wang, Jun Lv, Jun Huang, Yong Li, Pengjie Zhang, Yucheng Wu. Structures and photoelectrochemical performances of reduced TiO2 NTAs obtained by hydrogen thermal and electrochemical reduction methods. Journal of Solid State Electrochemistry 2020, 24 (2) , 365-374. https://doi.org/10.1007/s10008-019-04358-7
  73. Pedro Martins, Sandro Kappert, Hoai Nga Le, Victor Sebastian, Klaus Kühn, Madalena Alves, Luciana Pereira, Gianaurelio Cuniberti, Manuel Melle-Franco, Senentxu Lanceros-Méndez. Enhanced Photocatalytic Activity of Au/TiO2 Nanoparticles against Ciprofloxacin. Catalysts 2020, 10 (2) , 234. https://doi.org/10.3390/catal10020234
  74. Simon Fleischmann, Yangyunli Sun, Naresh C. Osti, Ruocun Wang, Eugene Mamontov, De-en Jiang, Veronica Augustyn. Interlayer separation in hydrogen titanates enables electrochemical proton intercalation. Journal of Materials Chemistry A 2020, 8 (1) , 412-421. https://doi.org/10.1039/C9TA11098D
  75. Charan Kuchi, A Lakshmi Narayana, O M Hussain, P Sreedhara Reddy. Electrospun TiO 2 nanofiber electrodes for high performance supercapacitors. Materials Research Express 2020, 7 (1) , 015098. https://doi.org/10.1088/2053-1591/ab688c
  76. Kunnambeth M. Thulasi, Sindhu Thalappan Manikkoth, Anjali Paravannoor, Shajesh Palantavida, Margandan Bhagiyalakshmi, Baiju Kizhakkekilikoodayil Vijayan. Ceria deposited titania nanotubes for high performance supercapacitors. Journal of Physics and Chemistry of Solids 2019, 135 , 109111. https://doi.org/10.1016/j.jpcs.2019.109111
  77. Xinyi Zhang, Yingjie Gao, Li-chao Nengzi, Bo Li, Jianfeng Gou, Xiuwen Cheng. Synthesis of SnS/TiO2 nano-tube arrays photoelectrode and its high photoelectrocatalytic performance for elimination of 2,4,6-trichlorophenol. Separation and Purification Technology 2019, 228 , 115742. https://doi.org/10.1016/j.seppur.2019.115742
  78. Bello Ladan Muhammad, Franscious Cummings. Nitrogen plasma treatment of ZnO and TiO2 nanowire arrays for polymer photovoltaic applications. Surfaces and Interfaces 2019, 17 , 100382. https://doi.org/10.1016/j.surfin.2019.100382
  79. Xiulei Ji. A paradigm of storage batteries. Energy & Environmental Science 2019, 12 (11) , 3203-3224. https://doi.org/10.1039/C9EE02356A
  80. Sung Pil Hong, Seonghwan Kim, Nayeong Kim, Jeyong Yoon, Choonsoo Kim. A short review on electrochemically self-doped TiO2 nanotube arrays: Synthesis and applications. Korean Journal of Chemical Engineering 2019, 36 (11) , 1753-1766. https://doi.org/10.1007/s11814-019-0365-0
  81. Kangwoo Cho, Seonggeun Lee, Hyeonjeong Kim, Hyung-Eun Kim, Aseom Son, Eun-ju Kim, Mengkai Li, Zhimin Qiang, Seok Won Hong. Effects of reactive oxidants generation and capacitance on photoelectrochemical water disinfection with self-doped titanium dioxide nanotube arrays. Applied Catalysis B: Environmental 2019, 257 , 117910. https://doi.org/10.1016/j.apcatb.2019.117910
  82. Min Chen, Can Wang, Yingcai Wang, Xiaoyang Meng, Zefang Chen, Weiqiu Zhang, George Tan. Kinetic, mechanism and mass transfer impact on electrochemical oxidation of MIT using Ti-enhanced nanotube arrays/SnO2-Sb anode. Electrochimica Acta 2019, 323 , 134779. https://doi.org/10.1016/j.electacta.2019.134779
  83. Jinyin Zhang, Yanyan Lou, Hualan Zhou, Yin Zhao, Zhuyi Wang, Liyi Shi, Shuai Yuan. Electrodeposited AgAu nanoalloy enhancing photoelectric conversion efficiency of dye sensitized solar cells. Electrochimica Acta 2019, 324 , 134858. https://doi.org/10.1016/j.electacta.2019.134858
  84. Zhiqing Wu, Nela Ambrožová, Ehsan Eftekhari, Nikhil Aravindakshan, Wentai Wang, Qilin Wang, Shanqing Zhang, Kamila Kočí, Qin Li. Photocatalytic H2 generation from aqueous ammonia solution using TiO2 nanowires-intercalated reduced graphene oxide composite membrane under low power UV light. Emergent Materials 2019, 2 (3) , 303-311. https://doi.org/10.1007/s42247-019-00029-5
  85. Amit Bandyopadhyay, Anish Shivaram, Indranath Mitra, Susmita Bose. Electrically polarized TiO2 nanotubes on Ti implants to enhance early-stage osseointegration. Acta Biomaterialia 2019, 96 , 686-693. https://doi.org/10.1016/j.actbio.2019.07.028
  86. Da Eun Kim, Daewon Pak. Ti plate with TiO2 nanotube arrays as a novel cathode for nitrate reduction. Chemosphere 2019, 228 , 611-618. https://doi.org/10.1016/j.chemosphere.2019.04.071
  87. Ling Gan, Yifan Wu, Haiou Song, Chang Lu, Shupeng Zhang, Aimin Li. Self-doped TiO2 nanotube arrays for electrochemical mineralization of phenols. Chemosphere 2019, 226 , 329-339. https://doi.org/10.1016/j.chemosphere.2019.03.135
  88. Baoshun Liu, Xiujian Zhao, Jiaguo Yu, Ivan P. Parkin, Akira Fujishima, Kazuya Nakata. Intrinsic intermediate gap states of TiO2 materials and their roles in charge carrier kinetics. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2019, 39 , 1-57. https://doi.org/10.1016/j.jphotochemrev.2019.02.001
  89. Guilherme G. Bessegato, Maria Valnice Boldrin Zanoni, Germano Tremiliosi-Filho, Cleber A. Lindino. Evidences of the Electrochemical Production of Sulfate Radicals at Cathodically Polarized TiO2 Nanotubes Electrodes. Electrocatalysis 2019, 10 (3) , 272-276. https://doi.org/10.1007/s12678-019-00525-6
  90. Ning Wei, Ying Liu, Min Feng, Zhaoxia Li, Shougang Chen, Youbin Zheng, Daoai Wang. Controllable TiO2 core-shell phase heterojunction for efficient photoelectrochemical water splitting under solar light. Applied Catalysis B: Environmental 2019, 244 , 519-528. https://doi.org/10.1016/j.apcatb.2018.11.078
  91. Zhen Li, Libo Yu. The Size Effect of TiO2 Hollow Microspheres on Photovoltaic Performance of ZnS/CdS Quantum Dots Sensitized Solar Cell. Materials 2019, 12 (10) , 1583. https://doi.org/10.3390/ma12101583
  92. Qi Wang, Musen Li, Zhou Wang. Supercapacitive performance of TiO 2 boosted by a unique porous TiO 2 /Ti network and activated Ti 3+. RSC Advances 2019, 9 (14) , 7811-7817. https://doi.org/10.1039/C8RA10671A
  93. Ivy Heng, Chin Wei Lai, Joon Ching Juan, Arshid Numan, Javed Iqbal, Ellie Yi Lih Teo. Low-temperature synthesis of TIO2 nanocrystals for high performance electrochemical supercapacitors. Ceramics International 2019, 45 (4) , 4990-5000. https://doi.org/10.1016/j.ceramint.2018.11.199
  94. Milivoj Plodinec, Ivana Grčić, Marc G. Willinger, Adnan Hammud, Xing Huang, Ivana Panžić, Andreja Gajović. Black TiO2 nanotube arrays decorated with Ag nanoparticles for enhanced visible-light photocatalytic oxidation of salicylic acid. Journal of Alloys and Compounds 2019, 776 , 883-896. https://doi.org/10.1016/j.jallcom.2018.10.248
  95. Baoshun Liu, Jiangyan Wang, Jingjing Yang, Xiujian Zhao. Charge carrier interfacial transfer pathways from TiO2 and Au/TiO2 nanorod arrays to electrolyte and the association with photocatalysis. Applied Surface Science 2019, 464 , 367-375. https://doi.org/10.1016/j.apsusc.2018.09.031
  96. Yin Jing, Soroush Almassi, Shafigh Mehraeen, Robert J. LeSuer, Brian P. Chaplin. The roles of oxygen vacancies, electrolyte composition, lattice structure, and doping density on the electrochemical reactivity of Magnéli phase TiO 2 anodes. Journal of Materials Chemistry A 2018, 6 (46) , 23828-23839. https://doi.org/10.1039/C8TA03719A
  97. Hongyang Zhao, Ziran Fan, Qiuming Fu, Huan Wang, Zhao Hu, Hong Tao, Xiaodan Zhang, Zhibin Ma, Tingting Jia. Enhanced photocatalytic performance of SrTiO3 crystals with (100), (110) and (111) orientations treated by N2 (H2) plasma. Journal of Materials Science 2018, 53 (22) , 15340-15347. https://doi.org/10.1007/s10853-018-2664-y
  98. Rupesh M. Tamgadge, Anupam Shukla. Fluorine-doped anatase for improved supercapacitor electrode. Electrochimica Acta 2018, 289 , 342-353. https://doi.org/10.1016/j.electacta.2018.09.034
  99. Zhenao Gu, Le Zhang, Bo Wen, Xiaoqiang An, Huachun Lan, Li-Min Liu, Tao Chen, Jing Zhang, Xingzhong Cao, Junwang Tang, Huijuan Liu, Jiuhui Qu. Efficient design principle for interfacial charge separation in hydrogen-intercalated nonstoichiometric oxides. Nano Energy 2018, 53 , 887-897. https://doi.org/10.1016/j.nanoen.2018.09.019
  100. Heng Zhu, Meiming Zhao, Junkang Zhou, Wenchao Li, Haoyu Wang, Zhe Xu, Lei Lu, Lang Pei, Zhan Shi, Shicheng Yan, Zhaosheng Li, Zhigang Zou. Surface states as electron transfer pathway enhanced charge separation in TiO2 nanotube water splitting photoanodes. Applied Catalysis B: Environmental 2018, 234 , 100-108. https://doi.org/10.1016/j.apcatb.2018.04.040
Load more citations